Polynomial Methods

Quantitative bounds for the Kakeya problem. Joints Theorem for Tubes using Polynomials.

Dennis Wollgast June 4, 2024

Contents

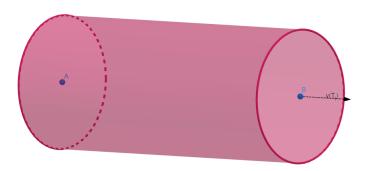
1	Besicovitch construction	1
2	L^p -Kakeya conjecture	3
3	Bush argument	4
4	Difficulties of the Polynomial Method for the Kakeya Problem 4.1 Important Observations	5
5	Joints theorem for tubes	6
6	Additional Computations	7

Besicovitch construction 1

Definition 1. Kakeya set of Tubes

Given a set $\{T_i\}_{i\in\mathbb{N}_{\leq M}}\subset\mathbb{R}^n$ of tubes of radius 1 and length N.

Supposed $\{\nu(T_i)\}_{i\in\mathbb{N}_{\leq M}}$ is $\frac{1}{N}$ separated and $\frac{2}{N}$ dense in \mathcal{S}^{n-1} . Where \mathcal{S}^{n-1} is the unit sphere in \mathbb{R}^n and $\nu(T_i)$ is the unit vector parallel to the axis of symmetry



Lemma 2. Besicovitch construction

Given a Kakeya set of tubes $\{T_i\}_{i\in\mathbb{N}_{\leq \bar{M}}}$ (with width 1 and length N) in \mathbb{R}^2 then $|\bigcup_{i=1}^{\bar{M}} T_i| > c\frac{N^2}{\log(N)}$ for some fixed c > 0.

Proof. Since $\{\nu(T_i)\}_{i\in\mathbb{N}_{\leq \bar{M}}}$ is $\frac{1}{N}$ separated and $\frac{2}{N}$ dense we can take all $\nu(T_i)$ with positive x and y coordinates and number the tubes s.t. $\frac{5|i-j|}{6N} \leq |\nu(T_i) - \nu(T_j)| \leq 2\frac{|i-j|}{N}$ (left inequality with

By the computation from below we get for $\nu(T_i)$, $\nu(T_j)$ with angle $\leq \pi/2$ that $|T_i \cap T_j| \leq 2 \frac{N}{|i-j|}$.

Now we compute

$$\int\limits_{\mathbb{R}^2} \big(\sum_{i=1}^M \mathbb{I}_{T_i} \big)^2 = \int\limits_{\mathbb{R}^2} \sum_{i,j=1}^M \mathbb{I}_{T_i} \mathbb{I}_{T_j} = \int\limits_{\mathbb{R}^2} \sum_{i,j=1}^M \mathbb{I}_{T_i \cap T_j} \leq \int\limits_{\mathbb{R}^2} \sum_{i=1}^M \mathbb{I}_{T_i} + \sum_{i,j=1, i \neq j}^M 2 \frac{N}{|i-j|}$$

Since a Kakeya set of tubes is 1/N separated and 2/N dense, it is $\frac{5}{6}N\pi \leq \bar{M} \leq 2N\pi$ (by 4, 5) and therefore $\frac{5}{24}N\pi \leq M \leq \frac{1}{2}N\pi$. Thus

$$\int\limits_{\mathbb{R}^2} \sum_{i=1}^M \mathbb{I}_{T_i} = M |T_1| \leq N^2 \frac{\pi}{2}$$
 and

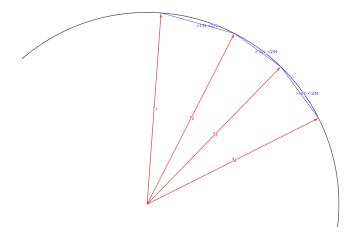


Figure 1: ordering of the unit vectors $\nu(T_i)$ belonging to the tubes

$$\sum_{i,j=1,i\neq j}^{M} 2\frac{N}{|i-j|} \le 2\pi N \sum_{i=1}^{M} \frac{N}{i} \le 2\pi N^2 (\log(M) + 1) \le 3\pi N^2 \log(N)$$

$$\Rightarrow \int_{\mathbb{R}^2} \left(\sum_{i=1}^{M} \mathbb{I}_{T_i}\right)^2 \le 10N^2 \log(N)$$

Let
$$K = \bigcup_{i=1}^{M} T_i$$

It is $|T_i| = N \times 1$, thus since $\frac{5}{24}N\pi \le M$: $\int_{\mathbb{R}^2} \sum_{i=1}^M \mathbb{I}_{T_i} \ge \frac{1}{2}N^2$

Now by Cauchy-Schwarz and the above inequality

$$\frac{1}{2}N^{2} \leq \int_{\mathbb{R}^{2}} \sum_{i=1}^{M} \mathbb{I}_{T_{i}} = \int_{\mathbb{R}^{2}} \sum_{i=1}^{M} \mathbb{I}_{T_{i}} \cdot \mathbb{I}_{K} \leq \left(\int_{\mathbb{R}^{2}} \left(\sum_{i=1}^{M} \mathbb{I}_{T_{i}} \right)^{2} \right)^{\frac{1}{2}} \cdot |K|^{\frac{1}{2}} \\
\leq \left(10N^{2} \log(N) \right)^{\frac{1}{2}} \cdot |K|^{\frac{1}{2}} \Leftrightarrow |K| \geq \frac{1}{20^{2}} \frac{N^{2}}{\log(N)}$$

Lemma 3. Computation for $|T_i \cap T_j| \leq 2 \frac{N}{|i-j|}$.

Proof. As one can see in the picture for two tubes T_i, T_j with infinite length which are not identical the volume of $T_i \cap T_j$ can be computed. This computation works as an upperbound for the case where the tubes have finite length.

The volume is given by the rhomboid with height 1 and one side u.

The length of u can be computed as $\frac{1}{\cos(\frac{\pi}{2}-\theta)}$ where $\theta < \pi/2$ is the angle between ν_i and ν_j $(\nu_i = \nu(T_i), \nu_j = \nu(T_j))$.

Further it is:

$$|\nu_i - \nu_j| = \sqrt{(1 - \cos(\theta))^2 + \sin(\theta)^2} = \sqrt{2(1 - \cos(\theta))}$$

For $\theta \le \pi/2$, $\frac{\cos(\frac{\pi}{2}-\theta)}{\sqrt{2(1-\cos(\theta))}}$ is minimal for $\theta = \pi/2$ with it being $\frac{1}{\sqrt{2}}$.

It follows

$$|T_i \cap T_j| \le \sqrt{2} \frac{1}{|\nu_i - \nu_j|} \le 2 \frac{N}{|i - j|}$$

Lemma 4. Computation that for a Kakeya set of tubes the angle between each two tubes is $\geq \frac{1}{N}$. Especially if for two unit vectors $\nu_i, \nu_j, K > 1$: $|\nu_i - \nu_j| > \frac{1}{K}$, then the angle between these two unit vectors is greater than $\frac{1}{K}$.

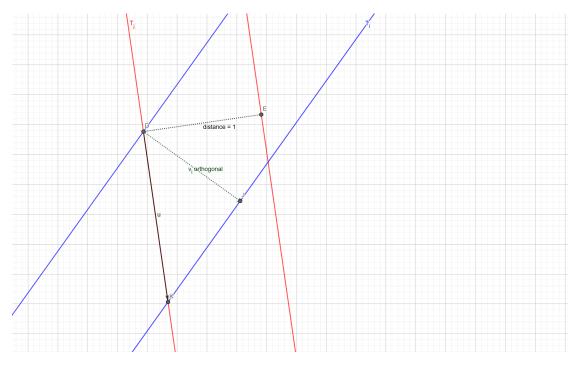


Figure 2: intersection $T_i \cap T_j$ for tubes T_i, T_j

Proof. Given two unit vector ν_i, ν_j with $|\nu_i - \nu_j| \ge \frac{1}{K}$. Let θ the angle between ν_i and ν_j .

Then it is

$$\sqrt{(1-\cos(\theta))^2 + \sin(\theta)^2} \ge \frac{1}{K} \Leftrightarrow (1-\cos(\theta))^2 + \sin(\theta)^2 \ge \frac{1}{K^2}$$
$$\Leftrightarrow 2(1-\cos(\theta)) \ge \frac{1}{K^2} \Leftrightarrow \cos(\theta) \le 1 - \frac{1}{2K^2}$$

since $\arccos: [-1,1] \to \mathbb{R}$ is monoton decreasing: $\Leftrightarrow \theta \ge \arccos(1-\frac{1}{2K^2})$

It is $\frac{d}{dx}\arccos(1-x) = \frac{1}{\sqrt{2x-x^2}}$ and therefore

$$\arccos(1 - \frac{1}{2K^2}) = \arccos(1 - \frac{1}{2K^2}) - \arccos(1 - 0)$$

$$= \int_{0}^{\frac{1}{2K^2}} \frac{1}{\sqrt{2x-x^2}} dx \ge \int_{0}^{\frac{1}{2K^2}} \frac{1}{\sqrt{2x}} dx = \frac{1}{2K} \int_{0}^{1} \frac{1}{\sqrt{x}} dx = \frac{1}{K}$$

Lemma 5. Computation that if for two unit vectors ν_i, ν_j the angle θ between ν_i, ν_j is greater than 1/K then $|\nu_i - \nu_j| > \frac{5}{6K}$ for any K > 1.

Proof. Given two unit vector ν_i, ν_j with $\theta \geq \frac{1}{K}$. It is

$$\sin(\theta) \le |\nu_i - \nu_j|, \sin(1/K) = \sum_{k=0}^{\infty} (-1)^k \frac{(\frac{1}{K})^{2k+1}}{(2k+1)!} \ge \frac{1}{K} - \frac{1}{6K^3} \ge \frac{5}{6K}$$

2 L^p -Kakeya conjecture

Let $\{T_i\}_{i\in\mathbb{N}_{\leq M}}\subset\mathbb{R}^n$ a Kakeya set of tubes and $\{T_i^0\}_{i\in\mathbb{N}_{\leq \bar{M}}}\subset\mathbb{R}^n$ a Kakeya set of tubes centered in the origin, it holds $\forall p>\frac{n}{n-1}\colon \exists C>0$

$$\|\sum_{i=1}^{M} \mathbb{I}_{T_i}\|_{L^p} \le C \|\sum_{i=1}^{\bar{M}} \mathbb{I}_{T_i^0}\|_{L^p}$$

3 Bush argument

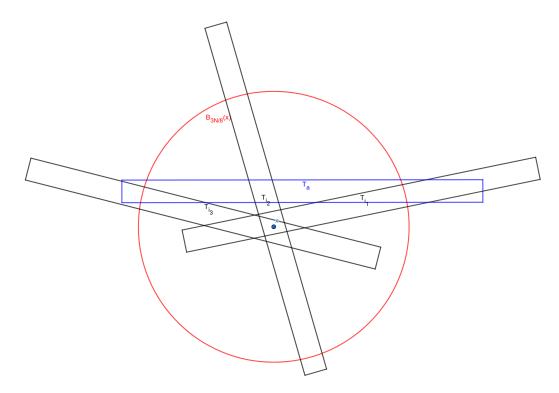


Figure 3: bush through x, red: circle of radius 3N/8 around x, black: tubes which are in the bush through x, blue: tube which is not in the bush through x

Lemma 6. (Bush argument) Given a Kakeya set of tubes $\{T_i\}_{i\in\mathbb{N}_{\leq M}}\subset\mathbb{R}^n$, then it is $|\bigcup_{i=1}^M T_i|\geq c(n)N^{\frac{n+1}{2}}$ for some c(n)>0 which is fixed for given n.

Proof. The volume of an n-dimensional tube is the volume of an (n-1)dimensional ball of radius 1 times N which is $\frac{\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2}+1)} \times N$

For a Kakeya set of tubes, we have a set of size at least $(\frac{2\pi N}{25})^{n-1}$ many tubes s.t. for each pair of tubes T_i, T_j : $|\nu(T_i) - \nu(T_j)| \ge \frac{8}{N}$ (see 14). From now on we consider only this new set of tubes.

Let $K = \bigcup_{i=1}^M T_i$ then it exists $x \in K$ with x lying in at least $\sum_{i=1}^M \frac{|T_i|}{|K|} \ge b \frac{N^n}{|K|} (b = (\frac{2\pi}{25})^{n-1} \frac{\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2}+1)})$ different tubes by the pigeon hole principle.

We call the set of tubes containing x the bush through x.

The bush through x is outside of $B_{3N/8}(x)$ partially disjoint since the distances between the $\nu(T_i), \nu(T_j)$ are greater than 8/N (see 15).

$$|T_i \setminus B_{3N/8}(x)| \ge 1/4 \cdot |T_i| = 1/4 \frac{\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2}+1)} \times N$$

Thus the union of the tubes in the bush has volume $|K| \geq 1/4 \cdot |T_i| \cdot b \frac{N^n}{|K|} = 1/4 \frac{\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2}+1)} \times N \times b \frac{N^n}{|K|} = c(n) \cdot \frac{N^{n+1}}{|K|}$ and since the bush of tubes through x is part of K: $\Rightarrow |K| \geq c(n) \cdot \frac{N^{n+1}}{|K|} \Leftrightarrow |K| \geq \sqrt{c(n)} N^{\frac{n+1}{2}}$

4 Difficulties of the Polynomial Method for the Kakeya Problem

Let $\{T_i\}_{i\in\mathbb{N}_{\leq M}}$ a Kakeya set of tubes in \mathbb{R}^n and $K = \bigcup_{i=1}^M T_i$ with $C(n)N^{n-\gamma} \geq |K| \geq c(n)N^{n-\gamma}$, C(n), c(n) > 0

How can one imitate the proof from the finite field Kakeya problem?

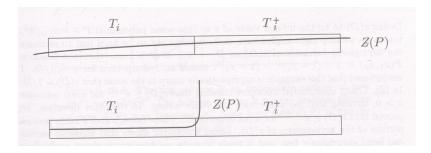
1. Observation: There is no non zero polynomial P which is zero on K, since K contains an open ball in \mathbb{R}^n .

Idea take a unit lattice and let P vanish on every center of a unit cube intersecting a tube. By parameter counting we could find P with degree $\leq k(n)N^{1-\frac{\gamma}{n}}$ for some k(n)>0.

We would have $\sim N$ points in each tube where P vanishes, but since they do not have to lie on one line it is not clear how to deal with them.

⇒ Vanishing lemma is the key difficulty

Let T_i^+ be the translation of T_i by $N\nu(T_i)$.



Does P vanish at many evenly distributed points along T_i^+ ? Unfortunately not necessary.

Let $D \in \mathbb{N}$ big, then the curve $y = x^D$ is close to the x-axis for $0 \le x \le 1 - D^{-1/2}$ but around x = 1 the curve turns sharply and is close to the x = 1 line.

It might be possible to show that an algebraic surface cannot bend too sharp in many points. But this question is very hard too solve.

4.1 Important Observations

Theorem 7. Polynomial Ham Sandwich theorem

Let $D \geq 1$, $m = \binom{n+D}{n} - 1$, $F_1, ... F_m$ m bounded sets in \mathbb{R}^n , then it exists a polynomial P of degree at most D which bisects $F_i \, \forall \, 1 \leq i \leq m$. https://n.ethz.ch/~ywigderson/math/teaching/HamSandwichNotes.pdf

Lemma 8. Let $T_i \in \mathbb{R}^n$ a tube, D_i a cross section of T_i and for $x \in D_i$ ℓ_x the line through x orthogonal to D_i , $P \neq 0$ a polynomial in \mathbb{R}^n .

Then $|Z(P) \cap \ell_x| \leq degP$ for almost all $x \in D_i$.

Consider again the unit lattice and denote with $\mathcal{Q}(K)$ all cubes intersecting K and with $\mathcal{Q}(T_i) \subset \mathcal{Q}(K)$ all cubes intersecting the tube T_i .

Let P a minimal polynomial bisecting each cube in Q(K).

As we have seen $|\ell_x \cap Z(P)| \le degP \le k(n)N^{1-\frac{\gamma}{n}}$ (second inequality: Polynomial Ham Sandwich theorem) for almost all $x \in D_i$.

Therefore for the average over all cubes intersecting T_i and almost all $x \in D_i$

 $AVG_{Q\in\mathcal{Q}(T_i)}|\ell_x\cap Z(P)\cap Q|\leq K(n)N^{-\frac{\gamma}{n}}$ for some K(n)>0,

also $AVG_{Q\in\mathcal{Q}(T_i),x\in D_i}|(\ell_x\cap Z(P)\cap Q)|\leq K(n)N^{-\frac{\gamma}{n}}\ll 1$ which is only possible if $Z(P)\cap Q$ is approximately parallel to T_i for most cubes .

 \Rightarrow structure called planiness i.e. for each cube there is a hyperplane $\pi(Q)$ s.t. all tubes intersecting Q are almost tangent to $\pi(Q)$.

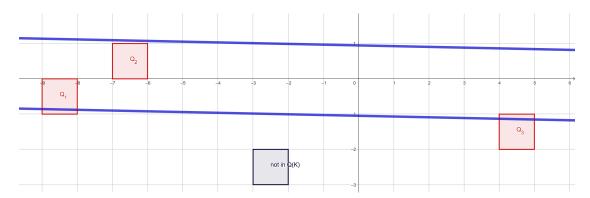


Figure 4: Examples of cubes intersecting a tube (blue lines) and therefore are contained in Q(K) and which are not

5 Joints theorem for tubes

Theorem 9. Joints theorem for Tubes

Given a set of lines $\{\ell_{j,a}\}\subset \mathbb{R}^n$, $1\leq j\leq n$, $1\leq a\leq A$ s.t. each line $\ell_{j,a}$ has an angle of at most $\frac{1}{100n}$ with the x_j axis, with $T_{j,a}$ the infinite cylinder of radius 1 centered around $\ell_{j,a}$.

Then the volume of $I = \bigcap_{j=1}^{n} \bigcup_{a=1}^{A} T_{j,a}$ is smaller than $c(n)A^{\frac{n}{n-1}}$ for some c(n) > 0.

Definition 10. Directed volume of a surface

Let \mathcal{M} a smooth hypersurface in \mathbb{R}^n , let for each $x \in \mathcal{M}$ N(x) a unit normal vector to \mathcal{M} at the point x.

For $\nu \in \mathcal{S}^{n-1}$ the directed volume of \mathcal{M} perpendicular to ν is defined as:

$$V_{\mathcal{M}}(\nu) = \int\limits_{\mathcal{M}} |N(x) \cdot \nu| d\mathcal{H}^{n-1}(x)$$

Lemma 11. For \mathcal{M} a smooth hypersurface, $\nu \in \mathcal{S}^{n-1}$ it is $V_{\mathcal{M}}(\nu) = \int_{\nu^{\perp}} |\mathcal{M} \cap \pi^{-1}(y)| d\mathcal{H}^{n-1}(y)$ where π is the orthogonal projection from \mathbb{R}^n to ν^{\perp} .

Lemma 12. Given a smooth hypersurface $\mathcal{M} \subset \mathbb{R}^n$, unit vectors $\nu_1, ... \nu_n$ with ν_i having an angle of at most $\frac{1}{100n}$ with the x_i axis then $\mathcal{H}^{n-1}(\mathcal{M}) \leq 2 \sum_{i=1}^n V_{\mathcal{M}}(\nu_i)$.

Proof. We show that for any given point $x \in \mathcal{M}$ it is $\sum_{i=1}^{n} |N(x) \cdot \nu_i| \geq \frac{1}{2}$.

Let $e_1, ... e_n$ the coordinate vectors, it is $\sum_{i=1}^n |N(x)e_i| \ge \sum_{i=1}^n |N(x)e_i|^2$ (scalar product of two unit vector is ≤ 1)

And $\sum_{i=1}^{n} |N(x)e_i|^2 = 1$ by Parseval's identity. Using 4 in the second inequality:

$$\sum_{i=1}^{n} |N(x)\nu_i| \ge \sum_{i=1}^{n} |N(x)e_i| - \sum_{i=1}^{n} |N(x)||(e_i - \nu_i)| \ge 1 - \sum_{i=1}^{n} \frac{1}{100n} = 1 - \frac{1}{100} \ge \frac{1}{2}$$

$$\Rightarrow 2\sum_{i=1}^{n} V_{\mathcal{M}}(\nu_i) = 2\int_{\mathcal{M}} \sum_{i=1}^{n} |N(x) \cdot \nu_i| d\mathcal{H}^{n-1}(x) \ge 2\int_{\mathcal{M}} \frac{1}{2} d\mathcal{H}^{n-1}(x) = \mathcal{H}^{n-1}(\mathcal{M})$$

Lemma 13. Cylinder estimate

Let T be an infinite cylinder in \mathbb{R}^n of radius r, ν a unit vector parallel to the axis of symmetry of T, $Z(P) = \{x \in \mathbb{R}^n \mid P(x) = 0\}$ i.e. the vanishing set of P. Then $V_{Z(P)\cap T}(\nu) \leq c(n)r^{n-1}deg(P)$, c(n) > 0

Proof. Let π the projection from T to $\nu^{\perp} \cap T$ which is a n-1 dimensional ball. For almost all $y \in \nu^{\perp} \cap T$: $|\pi^{-1}(y) \cap Z(P)| \leq deg(P)$ (lemma 8).

6

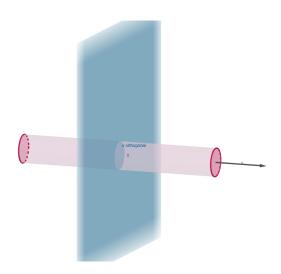


Figure 5: Cylinder estimate: tube T, orthogonal complement of ν (blue plane)

Then by lemma 11 for the first equation:

$$V_{Z(P)\cap T}(\nu) = \int\limits_{\nu^{\perp}} |Z(P)\cap T\cap \pi^{-1}(y)| d\mathcal{H}^{n-1}(y) \leq \int\limits_{\nu^{\perp}\cap T} deg(P) d\mathcal{H}^{n-1}(y) = \frac{\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2}+1)} r^{n-1} deg(P)$$

Proof. Joints theorem for tubes

Consider the unit cubical lattice, let $\{Q_1,...Q_V\} = \mathcal{Q}(K)$ all unit cubes which intersect I.

To show:
$$V \leq c(n)A^{\frac{n}{n-1}}$$
 and since $|Q_i \cap I| \leq 1$ ($|Q_i| = 1$), $I \subset \bigcup_{i=1}^V Q_i$ this is enough to show.

Let P a non-zero polynomial s.t. $Z(P) = \{x \in \mathbb{R}^n \mid P(x) = 0\}$ bisects each cube $Q_1, ..., Q_V$ (which exists by the Polynomial Ham Sandwich Thereom) and s.t. $deg(P) \leq k(n)V^{\frac{1}{n}}$ for some k(n) > 0

Each cube $Q_1,...Q_V$ intersects I and therefore there is a tube $T_{j,a}$ for each $1 \leq j \leq n$ s.t. Q_i intersects $T_{j,a}$.

Let for each j $T_j(Q_i)$ one of the tubes $T_{j,a}$ $1 \le a \le A$ (there is at least one) which intersects Q_i with direction $\nu_{i,i}$.

By lemma 12 we get

$$\sum_{i=1}^{n} V_{Z(P) \cap Q_i}(\nu_{j,i}) \ge \frac{1}{2} \mathcal{H}^{n-1}(Z(P) \cap Q_i) \ge \frac{1}{2}$$

Therefore $\exists \nu_{j,i}$ with $V_{Z(P) \cap Q_i}(\nu_{j,i}) \geq \frac{1}{2n}$. We assign the cube Q_i to the tube belonging to this vector $T_j(Q_i)$. Since we assigned V cubes to nA tubes we get one tube with $\frac{V}{nA}$ cubes assigned to it, we denote it by T and it's direction by ν .

Now let \bar{T} the cylinder with radius 2n and central axis ν , each of the $\frac{V}{nA}$ cubes Q_i lies in \bar{T} , since $\max_{x,y\in Q_i}|x-y|\leq \sqrt{n}$ and Q_i intersects T.

We get
$$\frac{V}{2n^2A} \leq V_{Z(P)\cap \bar{T}}(\nu)$$
 ($\mathrm{since}V_{Z(P)\cap Q_i}(\nu_{j,i}) \geq \frac{1}{2n}$), by the cylinder estimate $V_{Z(P)\cap \bar{T}}(\nu) \leq C(n)V^{\frac{1}{n}}$ and therefore $V \leq (2n^2C(n))^{\frac{n}{n-1}}A^{\frac{n}{n-1}}$

6 Additional Computations

Lemma 14. Number of tubes in a Kakeya set Given a Kakeya set of tubes, we have at least $(\frac{5N\pi}{6})^{n-1}$ many tubes in this set. Further we have a subset M of at least $(\frac{3N\pi}{25})^{n-1}$ many tubes s.t. for each $T_i, T_j \in M$: $|\nu(T_i)|$ $\nu(T_j)| > \frac{8}{N}$.

Proof. It needs to hold that the set is 2/N dense in S^{n-1} . Consider the polar coordinate repre-

sentation of the vectors in \mathcal{S}^{n-1} (i.e. $\nu_i = (\theta_1^i, ... \theta_{n-1}^i)$). By 5 we know that if the angle between $\nu(T_i)$ and $\nu(T_j)$ is greater than $\frac{12}{5N}$ then $|\nu(T_i) - \nu(T_j)| \ge 1$

Therefore if we can find for some $\nu(T_i)$ one angle θ_l^i of $\nu(T_i)$ s.t. $\forall j |\theta_l^i - \theta_l^j| > \frac{12}{5N}$ where θ_l^j is the l.th angle of $\nu(T_j)$ then the set cannot be a Kakeya set of tubes. We have n-1 angles, thus we get at least $(\frac{2\pi}{12})^{n-1} = (\frac{5N\pi}{6})^{n-1}$ tubes.

Consider again the coordinate representation of the unit vectors

If we have some $\nu(T_i), \nu(T_j)$ s.t. for some angle $|\theta_l^i - \theta_l^j| > 8\frac{6}{5N}$ then $|\nu(T_i) - \nu(T_j)| > \frac{8}{N}$. We now divide each polar coordinate into $\frac{2N\pi}{25}$ intervals, in each of these intervals $\left[\frac{25i}{N}, \frac{25(i+1)}{N}\right]$ there has to be some vector $\nu(T_i)$ in the middle interval $\left[\frac{25i+10}{N}, \frac{25i+15}{N}\right]$ because the Kakeya set is 2/N separated and an angle distance of $> \frac{12}{5N}$ correlates with a distance of > 2/N.

For all tubes $\nu(T_j)$ which are not in the interval $\left[\frac{25i}{N}, \frac{25(i+1)}{N}\right]$ $|\theta_l^j - \theta_i^l| \ge \frac{10}{N} > \frac{48}{5N}$ and therefore $|\nu(T_j) - \nu(T_i)| \ge 8/N$.

We get a subset M of at least $(\frac{2\pi}{\frac{25}{N}})^{n-1} = (\frac{2N\pi}{25})^{n-1}$ tubes with the condition that $\forall T_i, T_j \in M$: $|\nu(T_i) - \nu(T_i)| > \frac{8}{N}$.

Lemma 15. Given $x \in \mathbb{R}^n$ and a set M of tubes s.t. for each $T_i \in M$: $x \in T_i$ and s.t. $\forall T_i, T_j \in M : |\nu(T_i) - \nu(T_j)| > \frac{8}{N}$, then the tubes in M are disjoint outside of $B_{3N/8}(x)$.

Proof. Let $T_i \in M$, $y \in T_i$, $y \notin B_{3N/8}(x) \Rightarrow \exists L > 3N/8 \ y \in B_1(x + L\nu(T_i))$

Supposed $y \in T_j$ for some $T_j \in M$, then we need to have \tilde{L} s.t. $y \in B_1(x + \tilde{L}\nu(T_j))$ and thus $|L\nu(T_i) - \tilde{L}\nu(T_i)| \leq 2$.

Let θ the angle between $\nu(T_i)$ and $\nu(T_i)$.

$$|L\nu(T_i) - \tilde{L}\nu(T_j)| = \sqrt{(L - \tilde{L}\cos(\theta))^2 + \tilde{L}^2 \sin(\theta)^2} = \sqrt{L^2 + \tilde{L}^2 - 2\cos(\theta)L\tilde{L}}$$
$$\geq \sqrt{L^2 + \tilde{L}^2 - 2\cos(\frac{8}{N})L\tilde{L}} \geq \sqrt{\left(1 - \frac{32}{N^2}\right)(L - \tilde{L})^2 + \frac{32}{N^2}(L^2 + \tilde{L}^2)}$$

which is:

$$\geq \sqrt{4\left(1-\frac{1}{2}\right)+\frac{32}{N^2}\left(\frac{3N}{8}\right)^2} = \sqrt{2+\frac{9}{2}} > 2$$

for $|L - \tilde{L}| \ge 2$ and N > 8

and for $|L - \tilde{L}| < 2$ and N > 16:

$$\geq \sqrt{\frac{32}{N^2} \Big(\Big(\frac{3N}{8}\Big)^2 + \Big(\frac{2N}{8}\Big)^2 \Big)} = \sqrt{\frac{9}{2} + 2} > 2$$

So for large N, $y \notin B_{3N/8}(x)$, $y \in T_i \Rightarrow y \notin T_i$ for $i \neq j$.

References

Larry Guth. Polynomial Methods in Combinatorics. 2016. ISBN: 978-1-4704-2890-7.